Undecidability

We are going to show that there are problems that can't be solved on any Turing Machine. We need to develop a standard way to represent TMs.
I. You should have learned in Discrete Math that the binary strings (strings of 0 s and 1 s) are countable. Here is a way to list them: 0 , $1,00,10,01,11,000,100,010,110,001,101,011,111, \ldots$ There are many other ways. It doesn't matter which enumeration we use; just choose one and stick to it. Let B_{i} be the $i^{\text {th }}$ binary string in this enumeration.

TMs are allowed to have more than one final state but we can always recode them to have just one.

We can rename the states of any $T M q_{1}, q_{2}, \ldots q_{n}$ where q_{1} is the start state and q_{n} is the only final state.

It will help to have two standard TMS. Grumpy has no final states, so it rejects everything:

Happy is the TM that immediately enters a final state, so it accepts everything:

Here is a way to represent a TM as a binary string:
a) Represent state q_{i} with 0^{i}
b) Number the tape symbols $X_{1} . . X_{n}$ and represesnt X_{i} with 0^{i}
c) Encode the directions L as 0^{1} and R as 0^{2}.
d) Encode the transition $\delta\left(q_{i}, X_{j}\right)=\left(q_{k}, X_{l}, D_{m}\right)$ as $0^{i} 10^{j} 10^{\mathrm{k}} 10^{1} 10^{\mathrm{m}}$
e) Encode the complete transition function as $t_{1} 11 t_{2} 11 \ldots 11 t_{n}$ where the ti are the encodings of the individual transitions.
f) Encode the TM with final state t_{n} as $T 1110^{n}$ where T is the encoding of the transition function.

Example: Grumpy is 111 (no transitions, no final state)

Example: Happy is 1110

The tape alphabet is $\{B, 0,1\}$ which we'll encode as $\{0,00,000\}$ Transitions
$\delta\left(q_{1}, 1\right)=\left(q_{1}, 1, R\right)$ is 01000101000100
$\delta\left(q_{1}, 0\right)=\left(q_{2}, 0, R\right)$ is 0100100100100

Altogether the TM is 0100010100010011010010010010011100

Since the set of all binary strings is countable, we can count the TMs: Suppose w_{i} is the $i^{\text {th }}$ binary string. Let M_{i} be the TM represented by w_{i} if there is one, and Grumpy if there isn't. Every TM will be M_{i} for some i.

Since M_{i} is a TM we can ask if it accepts or rejects any string w. In particular we can ask if M_{i} accepts or rejects its own representation w_{i}. We know that Grumpy rejects its representation 111 and Happy accepts its representation 1110.

The diagonal language $\mathcal{L}_{\mathrm{d}}=\left\{\mathrm{w} \mid \mathrm{w}=\mathrm{w}_{\mathrm{i}}\right.$ for some i and M_{i} does not accept $\left.w_{i}\right\}$. We know that 111 , the representation for Grumpy, is in \boldsymbol{L}_{d} as is every string that does not represent a TM.

Theorem: $\boldsymbol{L}_{\mathrm{d}}$ is not recursively enumerable (i.e., not accepted by a TM)
Proof: Suppose TM M accepts \mathcal{L}_{d}. Since M is a TM it is M_{i} for some i. Now, is w_{i} in \mathcal{L}_{d} ? If so then M_{i} accepts w_{i} (since $M=M_{i}$ accepts all of \mathcal{L}_{d}.) But then by the definition of $\boldsymbol{\mathcal { L }}_{\mathrm{d}} \mathrm{w}_{\mathrm{i}}$ is not in $\boldsymbol{\mathcal { L }}_{\mathrm{d}}$. On the other hand, if w_{i} is not in \mathcal{L}_{d} then M_{i} doesn't accept w_{i}, so w_{i} must be in \mathcal{L}_{d}. Any way we go there is a contradiction. So no TM can accept \mathcal{L}_{d}.

We are going to talk about the differences between recursive and recursively enumerable languages. Here are two easy results:

Theorem: If a language is recursive then its complement is also recursive.
Proof: If the language is recursive then it is accepted by a TM that always halts. "Complete" the TM by giving it a "dead" state and replacing every missing transition with a transition to the dead state. Now the TM always halts in either the final state or the dead state. Switching the final and dead states gives a TM for the complement of the language.

Theorem: If a language and its complement are both recursively enumerable then the language is recursive.
Proof: Suppose M1 accepts the language and M 2 its complement. Use a 3-tape TM that has string w on tape 1 and simulates the tapes for M1 and M2 on the other two tapes. Simulate the running of M1 and M 2 on w . One of them will eventually halt in an accept state. If M1 accepts w then the simulator halts and accepts w . If M 2 accepts w then the simulator halts and rejects w. This is TM that always halts that accepts the language.

The universal language \mathcal{L}_{u} is $\{\mathrm{m} 111 \mathrm{w} \mid \mathrm{m}$ is the encoding of a TM M and w is an input string and M accepts $w\}$

Theorem: \mathcal{L}_{u} is recursively enumerable. Proof: We need a universal simulator -- a TM that takes as input the encoding for a TM and simulates it. We use a 3-tape TM. Tape 1 has the input m111w. Tape 2 simulates M's tape. This has two tracks -one is the contents of M's tape the other has a pointer to the current square on M's tape. Tape 3 has M's current state.
(cont'd next slide)

At the start tape 1 has m111w and the other tapes are blank. Copy w to tape 2 track 1 and set track 2 to point at its start. Write 0^{1} onto tape 3 as the current state.

To take a step look at the current state (tape 3) and current tape symbol (tape 2). Look through m (tape 1) for a transition using these. If you find one update tapes 2 and 3 . If you don't find one go to a REJECT state. If tape 3 ever gets a final state, halt and accept m111w.

Theorem: \mathcal{L}_{u} is not recursive.
Proof: We'll actually show that the complement of \mathcal{L}_{u} is not recursively enumerable (as it would have to be if \mathcal{L}_{u} was recursive).

Suppose there was a TM T that accepted the complement of \mathcal{L}_{u}. Make a new TM T' so that $\mathrm{T}^{\prime}(\mathrm{w})=\mathrm{T}(\mathrm{w} 111 \mathrm{w})$. T^{\prime} accepts w if w 111 w is not in \mathcal{L}_{u}. This means T^{\prime} accepts w if w is in \mathcal{L}_{d}. We know \mathcal{L}_{d} is not recursively enumerable, so T^{\prime} (and hence T) can't exist.

The structure of this argument is important. Suppose we know problem P_{1} is not recursive (or RE). If we can how how to turn an instance of P_{1} into a problem P_{2} (reducing P_{1} to P_{2}) then a decider (accepter) for P_{2} would also decide (accept) P_{1}. This means P_{2} also can't be recursive (RE).

So far we know \mathcal{L}_{d} is not recursively enumerable and \mathcal{L}_{u} is recursively enumerable but not recursive.

Here are some additional concrete languages:
$\mathcal{L}_{\mathrm{e}}=\{\mathrm{w} \mid \mathrm{w}$ is the encoding of a TM that accepts no strings $\}$
$\boldsymbol{L}_{\text {ne }}=\{w \mid w$ is the encoding of a TM that accepts at least one string $\}$

Note that \mathcal{L}_{e} is the complement of $\mathcal{L}_{\mathrm{ne}}$.

111 (the encoding of Grumpy) is in \mathcal{L}_{e}.
Any binary string that doesn't represent a TM is in \mathcal{L}_{e}.

Theorem: $\mathcal{L}_{\mathrm{ne}}$ is recursively enumerable Proof: Make a non-deterministic TM that, given w writes 111 after w and then writes an arbitrary binary string s. This TM then runs the universal simulator on w111s. If w accepts any string there is a path for this non-deterministic TM to accept w.

Theorem: $\mathcal{L}_{\text {ne }}$ is not recursive. Proof. Suppose TM T decides $\mathcal{L}_{\text {ne }}$. We will use T to build a decider for $\boldsymbol{L}_{\mathrm{u}}$. Given a pair (M, w) build a new TM M^{\prime} :

For every $x \mathrm{M}^{\prime}$ accepts x if M accepts w , and rejects x otherwise (i.e., M^{\prime} ignores its input and simulates M on w.)

If M accepts w then $M '$ accepts all strings. If M does not accept w then M^{\prime} is in \mathcal{L}_{e}. A decider for $\mathcal{L}_{\mathrm{ne}}$ will decide if M accepts w and so is a decider for \mathcal{L}_{u}, which can't exist.

Moral:

$\boldsymbol{L}_{\text {ne }}$ is recursively enumerable but not recursive. \mathcal{L}_{e} is not even recursively enumerable.

Rice's Theorem (H.G. Rice, 1951. This was his PhD dissertation): Let \boldsymbol{a} be any non-trivial property of recursively enumerable languages. Then \boldsymbol{a} is undecidable.

What this means: We identify a property of languages (such as being nonempty) with the set of TMs that accept the languages with this property. . A nontrivial property is one that applies to some but not all languages.

Rice's Theorem, version 2: Let \boldsymbol{a} be any set of TMs. Let

$$
\boldsymbol{a}^{*}=\{M \mid M \text { is a TM that accepts the same language as some TM in } \boldsymbol{a}\}
$$

Then if \boldsymbol{a}^{*} is neither empty nor the set of all TMs A^{*} must be undecidable.

Proof of version 2: First assume \boldsymbol{a}^{*} does not include the Grumpy TM G. Since \boldsymbol{a}^{*} is not empty, let M^{*} be any TM in \boldsymbol{a}^{*}. We will use a decider for \boldsymbol{a}^{*} to build a decider for $\boldsymbol{L}_{\mathrm{u}}$.

Given any (M, w) pair construct a new TM M^{\prime} where

$$
\begin{aligned}
& M^{\prime}(x)=M^{*}(x) \text { is } M \text { accepts } w \\
& M^{\prime}(x)=M(w) \text { if } M \text { does not accept } w
\end{aligned}
$$

To do this M^{\prime} first simulate M on w. If M ever accepts w, M^{\prime} then similates M^{*} on x .

Note that if M does not accept w then M^{\prime} accepts nothing -- M^{\prime} is equivalent to the grumpy TM, which we started out assuming is not in \boldsymbol{a}^{*}. So if M does not accept w then M^{\prime} is not in \boldsymbol{a}^{*}. On the other hand, if M does accept w then M^{\prime} accepts the same language as M^{*}, so M^{\prime} is in \boldsymbol{a}^{*}.

Altogether M^{\prime} is in \boldsymbol{a}^{*} if and only if M accepts w . A decider for \boldsymbol{a}^{*} gives us a decider for \boldsymbol{L}_{u}. This can't be, so \boldsymbol{a}^{*} must be undecidable.

We have assumed that \boldsymbol{a}^{*} does not contain Grumpy. If it does consider the complement of \boldsymbol{a}^{*}. This is nontrivial and doesn't contain Grumpy. The argument above shows that the complement must be undecidable, so \boldsymbol{a}^{*} must be undecidable.

The Post Correspondence Problem (Emil Post, prof at CCNY) Start with two sets of strings $A_{1} . . A_{n}$ and $B_{1} . . B_{m}$. Is there a set of indices i_{1}, $\mathrm{i}_{2}, \ldots \mathrm{i}_{\mathrm{k}}$ so that $\mathrm{A}_{\mathrm{i} 1} \mathrm{~A}_{\mathrm{i} 2} . . \mathrm{A}_{\mathrm{ik}}=\mathrm{B}_{\mathrm{i} 1} \mathrm{~B}_{\mathrm{i} 2} . \mathrm{B}_{\mathrm{ik}}$.

For example:

$A 1=1$	$B 1=111$
$A 2=10111$	$B 2=10$
$A 3=10$	$B 3=0$

The solution is 2113 :
$\mathrm{A} 2 \mathrm{~A} 1 \mathrm{~A} 1 \mathrm{~A} 3=101111110=\mathrm{B} 2 \mathrm{~B} 1 \mathrm{~B} 1 \mathrm{~B} 3$

We won't show it, but the Post Correspondence Problem is undecidable. A number of important "grouping" questions, such as whether a grammar is ambiguous, reduce to PCP.

